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FOREWORD

This document describes the general insights and the key issues for
the nuclear survivability of tactical systems. Volume II deals strictly
with the events in a system's life cycle that impact the attainment and
the maintenance of nuclear survivability.

This document is an outgrowth of a paper drafted in January 1977,

having been distributed in preliminary form as Guideline for Nuclear
Weapon Effects Survivability of Tactical Nuclear Systems by
Joseph J. Halpin et al, HDL-PRL-76-2 (March 1976). Some of the inputs
for this original draft came from Robert Raley and William Tylor of the
Ballistic Research Laboratories, Aberdeen, MD, and Werner Stark and
John Sweton of the Harry Diamond Laboratories (HDL) It was realized
that, although the original draft was intended for a specific system with
some additional work, the document could be broadened in scope. At that
point, the contributors named in this document performed the necessary
modifications and additions. The surgery that was performed was
extensive.

In addition to the inspiration provided by the original
contributors, there was also the guidance provided by the HDL Nuclear
Weapons Effects Program Office. The patience and the intensive reviews
performed by Fred Balicki, James Gaul, and John Corrigan are especially
appreciated.

The following also are acknowledged for their reviewp of and
meaningful comments on one of the final drafts: Heinz Mueller,
Frank Wimenitz, Paul Trimmer, Harvey Eisen, Roland Polimadei, Daniel
Spohn, Ronald Bostak, Robert Pfeffer, and Stewart Share of HDL;
Donald Vincent of the National Security Agency; Forest Thompson of the
Army Nuclear and Chemical Agency; and Cary Fishman of the Office of the
Project Manager, SINCGARS.
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1. INTRODUCTION

The more recent emphasis! and interest in developing military equip-
ment that will survive in a theater or tactical nuclear engagement has
brought increasing attention to the management and the execution of such
development programs. In the past, most of the Department of Defense
(DoD) nuclear survivability technology was oriented to strategic systems.
For these strategic systems, nuclear survivability is a must. Moreover,
the environments that these systems must survive are generally far more
severe than the environments that tactical systems* must survive. The
reason for this difference in the environment levels is the intimate
association of man with most equipment in the tactical nuclear war.
Recognizing the lack of appropriate and current overview documentation to
support nuclear survivability for the tactical system, we here document
the most current insights based on our research and experiences over the
years. Volume II deals strictly with the system acquisition aspects of
nuclear survivability. 2

The specific objective of this document is to describe to the system
developers and to the bidders on developmental programs the general in-
sights and the key issues for nuclear survivability. Among the topics
discussed are the nuclear environments and the rationale for the nuclear
survivability criteria. These are followed by a discussion of the
possible effects of these environments on the equipment. Effective
methods for resolving system vulnerabilities and impacts of such programs
on the system acquisition cycle also are considered.

This document is not intended to be a recipe book on how to satisfy
the system's nuclear survivability requirements. No document of this
size could do that. Our emphasis has been to present the most current
insights and, at the same time, to present as much of the total picture
as possible. Additional guidance is available through the mentioned
expertise of various Government and industry sources, the cited data
sources, and the Selected Bibliography. Support of the nuclear
survivability concepts also is available through Army Regulation
AR 70-60, Army Nuclear Survivability. The impacts of this regulation
are discussed.

'The Theater Nuclear Force Posture in Europe, A Report to the United
States Congress, Office of the Secretary of Defense (1975).

2 Joseph J. Halpin and John P. Swirczynski, Nuclear Weapons Effects on
Army Tactical Systems, Vol. IT, Management, Harry Diamond Laboratories
HDL-TR-1882-2 (May 1979).3Army Nuclear Survivability, Department of the Army AR 70-60 (20
September 1977).

*In this paper, "tactical" refers to those systems used in theater
nuclear warfare.
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The thesis of this document is that nuclear survivability is
achievable with an acceptable impact on life cycle cost, program
schedule, and system performance parametera. Early implementation and
application of nuclear survivability criteria with appropriate
documentation, informed trade-off decisions, and management awareness and
control will provide the basis for achieving this goal. The nuclear
survivability goals can be met in more ways than one, each with its
advantages and disadvantages. However, prudent decisions can be made
only by informed personnel. The justification of this thesis lies within
this document.

2. NUCLEAR WEAPONS EFFECTS PHENOMENOLOGY

2.1 Nuclear Environment2
The nuclear environment comprises several components created by

the detonation of a nuclear (fission) or thermonuclear (fission-fusion)
weapon. The direct weapon output components are neutrons, electrons,
fission frcagments, bomb debris, alpha particles, gamma rays, and x rays.
The indirect weapon effects are electromagnetic pulse (EMP), thermal
radiation, and the blast or pressure wave. These indirect effects are
caused primarily by the weapon's gamma- and x-ray interaction with the
atmosphere. In addition to the indirect weapon effects, an
energy-modified spectrum of neutrons and a time-modified pulse of gamma
rays arrive at the tactical system.

These environmental components do not arrive simultaneously at
the system. Table 1 lists the arrival time and the pulse widths of the
constituents of the nuclear environment for a 40-kT near-surface burst at
a range of 1300 m. For instance, gamma rays travel at the speed of
light. Neutrons travel at slower speeds, depending upon their individual
energies, and, therefore, they begin arriving after the initial or prompt
gamma pulse. This pulse of neutrons broadens with distance.
Interactions of the neutrons with the air and ground molecules produce
neutrons of lower energy and additional gamma rays. These indirect gamma
r-ys are referred to as delayed gammas. The EMP is created by the
atmospheric ionization, which is caused by the prompt gamma, x, and
delayed gamma rays. Being an electromagnetic wave, EMP travels at the
speed of light. Its arrival time is nearly simultaneous with the arrival
of the gamma ray. Thermal radiation from the weapon's fireball also is
electromagnetic radiation traveling at the speed of light. This
radiation results from the excitation and the radiative decay of air
molecules. A blast or a shock wave is created by the expansion of the
very hot, high pressure gases in the fireball. Because the blast wave
transport is dependent on air molecule motion, the time of arrival of the
blast wave is much later than the electromagnetic phenomenon.

8



TABLE I. PULSES PRODUCED AT 1300 rr FROM 40-kT WEAPON (NEAR SURFACE)

Time of arrival of, 1 width (s)

Type of pulse pulse maximum ( j Pulse width (s) R-marks

Prompt gamma '-5 x IO-' -"3 -10 -Nigh dose rate, low dose

Electromagnetic '-5 , 0O - 1O-3

Neutron and delayed gamma '10-l (50ý of dose)
radiation 5 iO (90 of Low dose rate, high doe

Thermal %-0.2 1 O2 .80 of energy content

Blast 2 1

One result of the nonsimultaneity of nuclear effects is that
the effect of the total environment can be greater than the sum of the
effects from the individual environmental components. For example, the
potential for material failure due to blast is greatly enhanced if the
target material is already weakened by the preceding thermal pulse.
Another example is the synergism between gamma-ray effects and EMP
effects (sect. 2.3.3.1).

Another consequence of the weapon output is the radioactivity
induced in the weapon system's materials and in the soil. This
radioactive debris is lifted and spread over a wide region. Some of this
radioactive debris may remain quite mobile in debris clouds, which can be
deposited in rain (rainout) or onto the surface of the earth by gravity
or wind (fallout). This rainout or fallout poses a long-term threat over
wide areas. Although this threat is an important consideration as a
biological threat, because of the low total ionizing dose there are no
significant consequences of this radiation to the equipment response.

The discussions of the nuclear environment up to this point
pertain to a tactical, low-altitude, nuclear burst. There have been
postulated and accepted scenarios in which large yield weapons coull be
detonated at high altitudes (>30 km). Although the slant ranges for
these bursts preclude the blast, thermal, and initial radiation (neutrons

- and gamma rays) frow reaching the surface of the earth in significant
intensity, an intensely pulsed electromagnetic field at a target that is

n .on or near the ground can be produced. This high-altitude EMP (HAEMP) is
characteristically different from the low-altitude EMP (LAEMP) in
amplitude, spectrum, polarization, and planarity. The implications of
these factors are discussed in section 2.3.4.1.

4-m•
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The nuclear-induced air ionization is responsible for a
secondary phenomenon called blackout. This produces noise or loss of
signal for radio wave transmissions. In most tactical situations, this
is not a long duration effect, and radar and radio transmissions are near
normal within m'inutes. A notable exception is high-frequency satellite
communications networks. In this exception, if the ionization is in the
path of the signal, the transmission may be affected for hours. '5

2.2 System Nuclear Survivability Criteria

Nuclear survivability is the capability of a system to
withstand a nuclear environment without suffering a loss of its ability
to accomplish its designated mission within an acceptable time span. The
decision on whether to require nuclear survivability for a system is
based on its possible use in a nuclear conflict, the criticality of its
mission in such a conflict, the battlefield density of the equipment, and
the timely replacement of the crew and destroyed or damaged equipment.
Inputs on these issues are submitted by the U.S. Army Training and
Doctrine Command and the U.S. Army Materiel Development and Readiness
Command (DAPCOM) to the Army Nuclear and Chemical Agency (ANCA), Fort
Belvoir, VA, Office of the Deputy Chief of Staff for Operations and
Plans. Being the proponent organization for nuclear survivability
criteria, ANCA receives inputs and recommends suitable criteria for each
system. 6

Most Army systems are man-machine combinations in which a human
operator or a crew is necessary for the system to perform its intended
function. The basic philosophy of nuclear survivability of such a
man-machine system is that the machine portion of the system should
survive if a sufficient percentage of its crew can survive long enough to
complete the mission. When the equipment and its operator are subjected
to the same environment, the survivability criteria are determined by
man's vulnerability, which is modified as appropriate by attenuation or
protection factors and selected equipment damage mechanisms. The degree
of attenuation depends on the weapon yield variables, the slant range,
and atmospheric conditions between the burst and the system. The
protection factors result from a modification of the nuclear environment

4 Nuclear Blackout of Tactical Communications, U.S. Army Nuclear and
Chemical Agency, Fort BeZvoir, VA, Nuclear Note No. 4 (August 1976).

5J. D. Illgen, Analysis of Typical Theater Army Communication Links
in a Nuclear Environment (U), General Electric Co., Philadelphia, PA,
HDL-CR-75-0!6-1 (July 1975). (Defense Documentation Centez AD C002803)
(SECRET RESTRICTED DATA)

6Nuclear Suivivability Criteria for Army Tactical Equipments (U),
U.S. Army Nuclear and Chemical Agency, Fort Belvoir, VA, ACN 04257
(1974). (CONFIDENTIAL RESTRICTED DATA)
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by the vehicle or by an enclosure (such as a building or a signal
shelter) surrounding the man-machine system. How the environment can be
modified can be demonstrated when the equipment and the man are in an
armored vehicle. The enclosure provides protection against thermal
radiation, attenuates neutron fluence and gamma radiation, and protects
personnel from debris accelerated by the nuclear burst.

Various configurations of the man-machine combination are
possible. If the man is protected (such as in a foxhole) and the
equipment is exposed, then the survivability criteria for the equipment
are based on the protected man's vulnerability. On the other hand, if a
man is exposed and his equipment is protected, the survivability criteria
for the system are based on the unprotected man's vulnerability.

The goal is nuclear survivability specifications on the
equipment, not specifications of man's survivability. To accomplish this
goal, man's vulnerability to the various components of the nuclear
environment must be integrated with the limiting damage factors on the
equipment survivability. Both the personnel casualty-producing
mechanisms and the equipment damage factors are functions of weapon yield
and slant range. On a graph of range versus yield, one can plot the
appropriate isocasualty and isodamage contours associated with each
mechanism for the combination of man and equipment under corsideration.
With all the pertinent contours for a given system on one graph, the
contour of the maximum effective range of this comk.nation of effects can
be determined. This contour is referred to as the "governing envelope."
This envelope (1) defines the rdnge at which personnel will satisfy the
operational constraints and (2) determines the range for each yield at
which the equipment must survive.

A range of nuclear weapon yields is applied to this governing
envelope. This range is dependent on intelligence information and
tactical employment considerations and represents the most probable
threat-yield spectrum. The highest values of The various nuclear
environment parameters on the governing envelope are normally found at
the end points of this threat yield spectrum and at the points of slope
discontinuity in the governing envelope. System nuclear survivability
criteria are established as the worst-case levels of effects compiled
from all these points. By this method, there is a balance of all the
effects over the yield range of interest. However, the nature of these
balanced nuclear survivability criteria is such that these environments
cannot exist simultaneously for any one burst situation, that is, one
yield and one slant range. Slant ranges on the order of 1 to 2 km are
typical survivability ranges for Army tactical equipment.

4uu m| || ni•|a



There are some systems for which the usual man-machine
relationships do not apply. These can occur when humans do not comprise
part of the system, when most cf a system's lifetime is spent in
battlefield storage or in a depot, or when a unique man-machine
relationship eylsts.*

Nuclear survivability criteria are established case by case,
and, in all cases, the entire stockpile-to-target sequence should be con-
sidered when criteria are requested. Many factors directly bear on the
percentage of equipments required to survive in a nuclear engagement.
Trade-offs among (1) numbers of systems deployed, (2) the research,
development, and production impacts of nuclear survivability
requirements, and (3) the nuclear survivability criteria should be

considered. Both ANCA and the Harry Diamond Laboratories (HDL) Nuclear
Weapons Effects Program Office (NWEPO) support and coordinate such
trade-off analyses. Regulatory support and guidance are provided 3 by
AR 70-60 (sect. 3).

2.3 Nuclear Weapons Effects

In the above discussion, we consider what the weapon output is,
how this output is transported to a system, and how system nuclear
survivability criteria are determined. The next step is to evaluate how
these environments interact with equipment, materials, and components and
how one should deal with these interactions. To do this evaluation, the
following discussions are divided into four major areas: (1) blast, (2)
thermal radiation, (3) initial nuclear radiation, and (4) EMP. The
characteristics of the environment, the effects of the environment,
system hardening considerations, and system hardening validation are
discussed in the following sections.

2.3.1 Nuclear Blast

This seccion describes what blast is, how it is generated,
how the resultant blast wave engulfs and loads a target, by what
mechanisms the blast loads result in damage, and what general procedures
might reduce or eliminate a target's susceptibility to blast damage.

3Army Nuclear qurvivability, Department of the Army AR 70-60 (20
September 1977).

*The overwhelming majority of man-machine combinations allows for man
to be temporarily incapacitated (combat ineffective). In other applica-
tions, such as a pilot, there is no allowance for even short periods of

incapacitation. Also, a system may be so critical to force effectiveness
that crew replacement is a viable option.

V 12
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The effects of a blast wave are commonly thought of as
limited to structural damage to tanks, vehicles, and buildings. More
recently, there has been documented the significance of other effects
such as blast-induced damage to antennas, blast-induced shock and
vibration problems in electronics, damage to electronic signal shelters,
and the synergism of blast and thermal radiation. Therefore, nuclear
blast damage considerations should cover crushisg, deforming, jarring of
sensitive equipment, tumbling and subsequent impact, overturning, and
impact of debris. The common approaches to solving these problems are
structural reinforcement, shock isolation, and tie downs. Retrofitting
to harden systems to the nuclear blast environment is not only costly,
but often not compatible with the form, the fit, and the function
requirements of the system. However, materials and approaches are being
developed that can make the blast hardening of systems both cost
effective and compatible with design requirements.

The service shock environment (handling, transportation, and
service use) is characteristically different in both amplitude and
frequency from the nuclear blast-induced shock and vibration environment.
In most blasts, the nuclear shock and vibration environment is of higher
frequency and greater amplitude. Each system must be evaluated for its
response to these two very different environments.

2.3.1.1 Blast Environment

The detonation of a nuclear weapon rapidly releases a large
anz-unt of energy in the form of x rays. These x rays are rapidly
absorbed by the air, heating the air within a limited space. This
spatially limited volume of hot compressed gases rapidly expands and
pushes a wave of shocked air, a "blast wave," in front of it. This wave
is characterized by a sudden increase in pressure at the "blast front," a
gradual decrease in pressure to the predetonation (atmospheric) air
pressure, a further decrease in pressure below atmospheric pressure due
to the overexpansion of the hot compressed gases, and an eventual return
to the atmospheric pressure. Figure 1 shows in general the variation of
pressure with time at a fixed location as the wave passes that location.
The blast wave generated by the detonatior expands radially from the
point of origin.

The sudden increase in pressure at the blast front is
accompanied by an increase in density and temperature and causes an
outward airflow. The airflow behind the blast front is known as the
"dynamic overpressure" and is a wind gust.

13
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Figure 1. Variation of pressure as wave passes location.

As the blast wave passes a given point in space, the
pressure, the temperature, and the density rise rapidly from ambient to
levels that are dependent upon the detonation yield and the distance
(range) from the burst point. After this rise, the air behind the blast
front flows rapidly from the origin. The pressure, the temperature, the
density, and the rate of airflow then gradually decrease until the
predetonation conditions are resumed. This overpressure portion of the
blast wave is called the positive phase. The peak overpressitre in this
phase is denoted as the positive overpressure, the peak static
overpressure, or simply the peak overpressure. The length of this
positive phase, that is, the length of time required for this phase to
pass a given point, is called the positive phase duration.

While the blast wave expands outward, hot, compressed gases
cool and cause a reduced pressure near the origin and, consequently, a
flow of air back toward the origin. The overexpansion and the resultant
reverse flow cause the local pressure to fall below and then slowly
return to atmospheric pressure. This portion of the blast wave is
referred to as the "negative phase" and is characterized by a pressure, a
temperature, and a density that are lower than the predetonation
atmospheric conditions and an airflow (wind gust) toward the detonation
origin.

To illustrate the magnitude of some of the parameters
described above, let us look at some examples of blast waves generated by
the detonation of a 20-kT nuclear weapon (equivalent to 20,000 tons of
TNT) detonated at the ground surface.

Peak overpressure (kPa) 103.4 34.5 6.9
(psi) 15.0 5.0 1.0

Time from detonation to blast
wave arrival (s) 0.8 2.0 7.8

Ground range (kin) 0.64 1.28 3.20
Maximum flow velocity (m/s) 172 69 17
Equivalent wind speed (km/hr) 616 248 59.2
Positive phase duration (s) 0.6 0.8 1.6

14



From these examples, as the blast wave expands away from
the point of origin, there is a reduction in the maximum pressure, an
increase in the time from detonation to blast wave arrival, a reduction
in the maximum flow velocity (wind speed), and an increase in the
duration of the wave.

The blast wave parameters are a function of the weapon
yield. For some equipment, two sets of blast environments are specified.
The primary differences are in the peak overpressure and the positive
phase duration of the blast wave. When two sets of criteria are given,
the system response and hardening must be evaluated for both sets.

2.3.1.2 Blast Effects

To illustrate how a blast wave interacts with a target,
consider a simple rectangular box target resting on the ground (fig. 2).
As the blast wave (fig. 2a) encounters the target (fig. 2b), a portion of
it strikes the target and reflects, that is, reverses its direction of
travel. The reflection significantly increases pressure. For very low
pressures, on the order of 6.9 kPa, the reflected pressure is
approximately two times the incident blast wave pressure. For higher
incident pressures, 103.4 to 138 kPa, the reflected pressure is perhaps
three times the incident pressure. For very high pressures, hundreds to
thousands of kilopascals, the reflected pressure can be as much as 10
times the incident pressure. As the blast wave continues to engulf the
target (fig. 2c, 2d), the undisturbed portion of the blast wave
continues, and the reflected pressure that is applied to the target is
reduced. Once the undisturbed blast front reaches the rear of the target
(fig. 2e), it continues to expand down the back of the target until
eventually the target is completely engulfed by the blast wave (fig. 2f).

Two sets of forces or loads act on a target that is
subjected to the nuclear blast environment. First, the time-varying,
static overpressure tends to crush the target. As noted in figure 2,
these overpressures interact over the target in a complex way with their
amplitudes varying with time and distance from the target. This crushing
phase is referred to as the "diffraction phase" of the blast loading.

By the time that the diffraction phase is complete, the
dynamic pressure that causes drag loading (the second set of target
loads) becomes an effective damage mechanism. This dynamic pressure
tends to translate or overturn the target. The strength of the drag
loading on the target depends on the dynamic pressure, the duration of
the applied pressure, and the size and the shape of the target. In
addition, the blast winds pick up dust, debris, and possibly other small
equipment and subjects the target to debris impact or missiling. These
can increase the possible damage to the target.

15
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Figure 2. Blast wave engulfing target.

Several types of damage the target might result from the
blast wave impinging on and subsequently loading the target. When the
blast front first encounters the leading surface of the target, a slap or
a hammer blow is imparted. This slap causes a large, high-frequency
shock (acceleration) to be induced in the outer structure of the target
an•d to any internal components that might be in structural contact with
the outer container. This acceleration can do considerable damage to
various types of internal and external components and mechanisms. For
example, fragile, exterior, optical components may b. cracked or

shattered. As the blast wave engulfment of the target continues, the
surfaces can buckle or the structure can be crushed. Buckling can be a
damage mechanism wnen the system or the structure walls come in contact
with internal mechanisms, wires, or components.

The diffraction loads ars reduced by varying degrees if
there are openings in the structure that allow the internal pressure to
increase due to pressure leaking into the structure; but this reduction,
in turn, subjects the interior to a varying pressure environment. Open
tank hatches, electronic shelter doors, or air vents allow for these
pressure leaks. Not only do these leaks provide a path for duest and
debris, bmt the equipment inside the enclosure, which was considered to
he protected from the blast overpressure, can now be unexpectedly
subjected to the incident overpressure.

16



If the target equipment survives the acceleration to its
structure or internal components and the crushing effects of the blast
wave engulfment, it is subject to the influence of the drag loading.
Drag loading attempts to rip off exterior components and translate the
equipment as a whole. When the friction between the ground and -he
equipment is high, the equipment may overturn. Otherwise, it may 'be
translated or accelerated to some velocity, which depends upon the
equipment's size and weight, and mZ7 consequently impact some other

object, another system, or a terrain feature such as a rock, a hill, or a
tree. The primary drag loading damage mechanism on a small object, such
as a radio, is solid impact. However, with a large object, such as a
truck, the drag loading will most likely produce overturning. For higher

yield weapons, the duration of the dynamic pressure is longer, the
magnýitude is larger, and, therefore, there is a greater potential for

overturning and translational damage.

Concurrent with the loading, the target is subjected to the
debris carried along in the blast wave. When small particulate material
such as dust, sand, or vegetation impinges on the target, a scouring or
sandblast can occur, which causes damage, particularly to optical
systems. Also to be considered is the penetration of particulates into
the system through vents, openings, tears, rips that might have resulted
from the crushing or buckling of the structure, or hole. caused by the
penetration of large pieces of debris. This particulate matter that may
have entered the system is capable of damaging the sensitive components
of many systems. Larger debris fragments from other targets, tree limbs,
or rocks may actually penetrate the structure.

Blast damage is a function of weapon yield, the terrain

involved, system orientation, and the way that the target interacts with
and then reacts to the blast wave. System response analysis, therefore,
is complex. Figure 3 shows some experimental threshold values for four
classes of military equipment.

2.3.1.3 Blast Hardening Approaches

Once the blast environment has been specified, the types
and the phases of loading have been determined, and the resulting damage
mechanisms have been identified, various methods that might be employed
to lessen or eliminate damage to the target must be considered.
Shock-induced acceleration may be reduced or eliminated by employing
shock isolation devices and by providing rattle space. For shock
isolation, internal components are not placed in contact with the
container, but are shock mounted so that the total, slap-generated
acceleration is not transmitted to the internal components. Rattle space
is provided so that the outer container can be deformed without
contacting the internal components. Buckling and crushing are overcome
by increasing the structural strength of the container.
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ONSET OF BLAST DAMAGE

SIGNAL SHELTER BARE

2 WHEELED VEHICLE OVERTURN

HFLICOPTER

I LARGE ANTENNAS

II

1 2 3 4 5 6 7 8 10 11 12 'ps
69 13 8 20 7 27 6 345 414 48 3 552 621 690 75 9 82 8 kPa

PEAK STATIC OVERPRESSURE

Figure 3. Thresholds for nuclear blast-induced damage in typical classes
of Army equipment.

Hardening against debris borne by a blast wave can be
accomplished through the use of impact-resistant materials and covers for
particularly vulnerable parts. Dust penetration can be prevented through
the addition of conventional seals and filters, where adequate
considetation is given for nuclear blast and thermal radiation-induced
changes in these seals and filters. Fragment penetration can be reduced
through the incorporation of armor through the use of either heavier case
materials or some of the modern configurations of woven Aramid fiber
materials such as Kevlar sandwiches or honeycombs.

Thus far, all of the techniques for hardening have applied
to the static overpressure problem. Techniques for hardening against the
overturning or translational effects of the drag loading phase, however,
must be defined separately for various types of targets. For small
portable targets such as hand-carried or backpack radios, tying down the
targets might be an acceptable solution. For large targets, such as
vehicle-mounted electronic shelters, which must always be able to be
mobile, techniques that would increase blast stability include outriggers
or tie riowns.

2.3.1.4 Blast Survivability Validation

Most systems are complex physically, and, therefore,
interactions with a complex blast environment are often quite difficult
to model analytically. The use of analytical tools that have been
validated by experiment is sufficient to validate blast snarvivability.
Verification of the analytical tools by experiment also is difficult and
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complex; in rare cases, direct experiments on Army equipment could cost
less. In many cases, scale-model experiments have been useful to define
the major damage mechanisms and the worst-case orientations. All blest
simulators, including high-explosive field tests, have soma limitations
that preclude testing a system to the complete nuclear threat of
interest. Typical limitations are the size of the target that can be
tested, the pressure level to which the target can be exposed, the
duration of the blast wave that can be generated, and the shape of the
pressure-time history th;at can be imposed on the target. The
infrequency, the high costs, the use of only one one shot, and the
singular environment of a high-explosive field test simulation are
specific limitations of this technique. Therefore, a thorough validation
program should consist of analysis and experiments.

For such a combined program, the following steps might be
taken:

a. Identify the best existing analytical tool for
predicting the structural or whole body response of the target, such as
TRUCK.

7

b. Define the major damage mechanisms and worst-case

loading parameters by analysis or scale-model testing.

c. Identify the blast simulator 8 that would most nearly

produce the desired loading parameters.

d. Analyze the system response in this blast simulator
environment.

e. After designing the system to survive, test the system
by using the selected simulator.

f. Compare the analytical and experimental results,
evaluate the ability of the analysis to predict the structural response,
and modify the analysis if required.

7Norman P. Hobbs, John P. Walsh, Garabed Zartarian, William N. Lee,
and Yau Wu, TRUCK--A Digital Computer Program for Calculating the
Response of Army Vehicles to Blast Waves, Kaman Avidyne, Burlington, MA
DAAD 05-74-C-0744, KA TR-136 (March 1977). (Defense Documentation Center
AD E430051)

8Blast and Shock Simulation Facilities in the United Kingdom, Canada,
and the United States, Rev. ed., Defense Atomic Support Agency DASA 1627
(April 1967). (Defense Documentation Center AD 462107)
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g. Optionally, extend the experimental and analytical
comparisons to include the test results of a high-explosive nuclear
simulation event, and modify the analysis if required.

h. Use the verified analytical tool to predict the
respcnse of the target to the tactical threat criteria.

If all of the proposed steps are sucessfully completed,
then it can be assumed that system hardening has been validated for the
proposed threat. It can be assumed also that an analytical tool has been
verified that could be used to revalidate the system when the threat
level changed or to evaluate similar systems to the blast environment.
Since all nuclear weapons environment simulators have limitations, this
general procedure is recommended for not only the blast environment, but
all the constituents of the nuclear environment.

2.3.2 Nuclear Thermal Radiation

The popular concept of the effects of nuclear thermal
radiation is often limited to burning and melting of materials. However,
there are more subtle effects at low fluences in optical equipment and
electronic systems. The precise determinaticoi of thermal effects is
hampered by inadequate materials data, and, therefore, one approach is to
use worst-case calculations to focus attention on the most serious
problems. System thermal radiation survivability can sometimes be
validated analytically. New simulation techniques are being evaluated to
improve the validation of system thermal response.

2.3.2.1 Thermal Effects

The thermal effects produced in materials by a nuclear
thermal radiation environment are due to an increase in the materials'
temperature. This increase is brought on by the absorption of all or
part of the thermal radiation incident on the material. This temperature
increase can produce the following: flaming, smoking, ablating, melting,
and vaporizing of the material; degradation of the electrical and optical
properties of the material; and thermal stresses, displacements, thermal
buckling, and degradation of the structural properties of the material.
These thermal effects can significantly influence the effects of the
subsequent air blast loading and, therefore, must be considered in any
blast effects analysis.

Important points about thermal radiation from a nuclear
explosion are not only that the amount of energy may be considerable, but
also that it is emitted in a very short time. For example, the
approximate duration of the thermal environment of a 100-kT weapon is
3 s. Consequently, the energy absorbed by poor heat conductors is
largely confined to a shallow depth of the material, and temperatures can
be very high at the surface of the material.
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Because the magnitude of the thermal effects is highly
dependent not only on the materials that make up the system, but also on
the geometry of the materials and the thermal environment, available
effects data are limited to a specific thermal environment and the system
materials exposed to it. Consequently, thermal effects analysis of a
system must generally be done system by system for any system's specific
thermal environment.

Frequently, rough calculations can be made to determine
whether thermal radiation-induced temperature increases are a problem.
These calculations should assume a worst case; that is, all the incident
energy is absorbed, unless there are data to the contrary. This
technique is useful in eliminating those materials or portions of a
system that are not a problem. On the other hand, questionable areas are
identified for further evaluation. To obtain the greatest accuracy, this
latter evaluation is generally experimental.

Effects such as flaming, smoking, ablating, melting,
vaporizing, and degradation of electrical, optical, and structural
properties can best be analyzed experimentally by using a simulated
nuclear thermal environment such as that produced by the solar furnace at
the White Sands Missile Range, NM. Loop et a19 list additional thermal
radiation sources. These sources are limited in that only small areas of
the materials can be exposed to the thermal environment, and they may not
be able to provide the required thermal flux rate. It is because of this
limitation that thermal stress, displacement, and buckling effects must
be analyzed by using heat transfer and structural response computer
programs. This approach is not as straightforward as it seems since
these programs require, as input, temperature-dependent material property
data that often do not exist. However, for most materials and systems,
the thermal constituent of the tactical threat may not cause serious
degradation or damage.

Once thermal effects and their magnitude have been
determined, it is then necessary to determine to what extent all of these
effects degrade the operational function of the system.

2.3.2.2 Thermal-Hardening Techniques and Protective Measures

The extent of the effects produced by the thermal
environment in materials depends largely on the temperature increase in

Sthe materials. For thermally conducting materials, the temperature

9 john D. Loop, David L. Nebert, and Ennis F. Quigley, Characteristics
of High Intensity Facilities for Nuclear Thermal Effects Analyses of
Tactical Systems, U.S. Army Ballistic Research Laboratories, Aberdeen
Proving Ground, MD, BRL-MR-2083 (December 1970). (Defense Documentation
Center AD 880215)
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increase can be minimized by increasing the thickness of the material or
reducing the amounts of thermal energy absorbed or both. For thermally
nonconducting materials, the temperature increase can be minimized only
by reducing the amount of eneigy absorbed by the material. This amount
can be reduced by (1) coating the material with a heat-dissipative
material, such as an ablator, or with a highly thermal radiation-
reflective material or (2) shielding the material. When shielding, one
should consider the thermal radiation as arriving from all directions and
not merely on a line of sight from the fireball. Any shield that merely
intervenes between the material and the fireball may not be entirely
effective.

Optical systems are especially vulnerable to the nuclear
thermal environment and, generally, can be protected only by mechanical,
electrical, or chemical shutters. Nonconducting or insulating components
such as plastic knobs, electric cable insulation, fiber optic cables,
rubber gromiets, seals, tires, and tread pads can ignite, char, or melt
when exposed to the thermal environment. Plastic windows on instruments
can be fogged, and glass windows can be cracked. The problems could be
minimized by using reflective or thermally conducting materials for these
components and by recognizing that, in most cases, reflective coatings
are not compatible with camouflage requirements. Double insulation
provides an effective means of raising the cable degradation threshold of
electric and fiber optic cables. Before choosing alternative materials,
one must be assured that the charring or the melting will produce more
than cosmetic effects to the survivability of the system, particularly
for small systems.

2.3.2.3 Thermal-Hardening Validation

Thermal hardening can be validated by worst-case
calculations. By this method, internal temperature rise and surface
temperature calculations should demonstrate that an adequate margin
exists so that the system can complete its mission. Where this margin
does not exist, the experimental approach should be taken.

At the present time, a newly developed, large-area, thermal
simulator, the "flash bulb" technique, is being evaluated by the Army
Ballistic Research Laboratories, Aberdeen MD. It employs large plastic
bags filled with oxygen gas and aluminum dust. Early indications are
that this method will be adequate for moderate-size structure
illumination to thermal radiation threat criteria. Tests have been
performed using this thermal simulator with shock tubes to evaluate the
blast-thermal synergism. Early results indicate that this experimental
technique will be quite valuable in assessing this synergism. Other
thermal simulation techniques using pyrotechnics are being explored, but
are not as promising as the flash bulb technique.
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2.3 3 Initial Nuclear Radiation

Materials, electronic piece parts, and, hence, system
performance can be seriously affected by exposure to initial nuclear
radiation. The specific radiation components of interest in this section
are the neutrons and the gamma rays that are transported to the system.*
These pulses of radiation produce effects that are commonly referred to
as "transient radiation effects" (TRE). The TRE can be both permanent
and transient. The principal effects of interest occur in electronic
systems, particularly in semiconductor and optical materials.

Regarding the environment, the effects of the interaction
of the weapon's output with the air modify the neutrons' spectra and
delay the gamma pulse. An additional modification or attenuation of the
initial nuclear radiation can occur when this radiation interacts with
the system. However, these modifications are not significant for most
structures, except for armored vehicles or thick (greater than 25 cm)
earthen or concrete structures. They are not significant because the
gamma-ray attenuation increases with increasing material density and
thickness. On the other hand, neutron attenuation is greatest for
materials that contain hydrogen, such as damp earth, concrete, or any low
atomic number (Z) substance.t

2.3.3.1 Transient Radiation Effects

Radiation-material interactions.--Two atomic changes can

result from the interaction of nuclear radiation with matter: atomic
displacement effects and ionization effects. For displacement effects,
atoms must receive sufficient energy to be dislodged from their normal
sites. Heavy particles such as neutrons are efficient producers of
displacement effects because of their kinetic energy. Within the
material, displacements disrupt the orderly or stable arrangement of the
atoms. Near these disrupted sites (defects), the electronic energy
levels are perturbed. These perturbations influence the material's elec-
tronic properties and are important considerations for solid-state
devices.

Ionization effects are produced by interactions of the
nuclear radiation particles or photons (gamma rays) with atoms. Thes-
interactions result in free electrons and holes (parent ions). Some ot

*Even though a significant percentage of the nuclear weapon energy is

in the x-ray output, these x rays are readily absorbed in the atmosphere.
For systems on or near the ground and at slant ranges of interest to
tactical Army systems, the direct x-ray effects do not constitute a
threat.

tIron is not a low-Z material, but, because of the thickness of
armored vehicles, attenuation factors of 0.5 to 0.9 are possible.
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the electrons released in the material have sufficient energy to escape
from the material and add to the external radiation flux (secondary
electron emission).* However, most of the electrons released by
ionization events lose their energy in the material, form a mobile
population of electrons, and leave behind holes ac thermal energy. The
prompt, radiation-induced release of electrons and holes produces a
current that in certain materials can be measured in an external circuit.
Some electrons and holes are trapped in the material and change the
electronic and optical properties of the material.

To quantify each of the effects, one must relate the
effects to a description of the radiation en, -onment. The description
appropriate to displacement (neutron) effects is different from that for
ionization effects. For the latter, specifying the radiation absorbed in
terms of the eneray deposited in the material in units of rad (material)
is appropriate, such as rad (Si). For displacement effects, the
description requires that the number density and the energies of the
incoming neutrons be related to the cross section versus energy for
displacements in the material. The accepted convention is to specify the
neutron environment as a fluence in neutrons per square centimeter (1-MeV
damage equivalent in the material).t For the material of most interest,
Si, the technique for calculatina the l-MeV equivalence is described by
Rudie.10

Since all electronic systems contain semiconductor devices,
but all of these systems do not contain electro-optical components, the
discussion is divided into two parts: semiconductor devices and
electro-optical components.

Neutron effects in semiconductors.--The most sensitive
components of an electronic system to TRE are generally the semiconductor
devices. Neutron-induced displacements produce three major effects in
the semiconductor device material: (1) minority-carrier lifetime
degradation, (2) majority-carrier removal, and (3) majority-carrier
mobility decrease. For fluences below 5 x 1012 n/cm2 , the important
effect is minority-carrier lifetime degradation. For example, this
degradation causes current gain degradation in bipolar transistors.
Those device technologies that are insensitive to this effect can be
eliminated from further consideration. Such device technologies include
junction field-effect transistors, all types of metal oxide semiconductor
(NOS) devices, microwave avalanche diodes, and Varactor diodes. On the

1 ONorman J. Rudie, Principles and Techniques or Radiation Hardening,
2, Western Periodicals Co., North Hollywood, CA (1976), 20-14.

*This is the source of internal or systern-generated EMP.
tFor notational ease in this paper, "n/cm2 " is used in place of

"n/cm2 (l-MeV damage equivalent in Si)."
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other hand, technologies associated with bipolar transistors, bipolar
integrated circuits (IC's), diodes, and various types of thyristors may
be quite sensitive to minority-carrier lifetime variations.

Consider first the effects on bipolar transistors.
Neutron-induced displacements in bipolar transistors can cause current
gain degradation. The extent of the degradation within a device depends
principally on the neutron fluence, the operating point of the device,
and the time followina the exposure (some damage anneals out). Normally,
devices with larger gain-bandwidth products UT's) suffe: smaller
neutron-inducee gain degradations. A general rule is to use transistors
having fT values greater than or equal to 50 MHz where feasible and to
bias them to operate near the peak current gain. This rule ensures that
there will be little or no adverse response to the effects of neutrons at
fluences of interest to most tactical systems.

Saturation voltage changes of transistors as a result of
neutron irradiation may be as important as gain chances in some circuit
applications, such as power supplies. In contrast to the neutron-induced
changes in gain when the vain decreases with increasing neutron fluence,
the saturation voltage increases with increasing neutron fluence.

For diodes, the neutron-induced changes are typically
small. However, some parameters change measurably in some devices. For
example, high-power rectifier diodes may increase somewhat in forward
voltage dro', and temperature-compensated precision reference diodes may
have small reverse -voltage changes. Specific device data are required to
determine the im&-rtance of these changes to the circuit of interest.

In b!p2.ar digital IC's, neutron irradiation causes the
fan-out capability (the number of gate inputs that can be coupled to an
IC's output) to be reduced. This reduction occurs because the changes in
the output transistor's parameters reduce the maximum current that the
transistor can sink. In addition, the high-state output and low-state
output voltage levels may degrade somewhat so that the protective voltage
difference (guaranteed noise voltage margin) between the two levels is
reduced. Thus, the IC may be more vulnerable to noise-induced changes in
logic state after irradiation. These changes occur at neutron fluences
greater than or equal to 5 x 1012 n/cm2 .

In analo. IC's, the neutron-induced changes can result in
I some loss of IC gain, a reduction in the fT, changes to the input offset

voltage, and a reduction in the ability to supply current to a load.

Because of the small junction areas, high gains, and large negative
feedback used in most designs, analog IC's typically are not a problem
for neutron fluences less than 5 x 1012 n/cm2 . Exceptions may be
extremely high-performance analog IC's or those IC's that use lateral PNP
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transist-rs for gain elements. These lateral PNP transistors are
typically of lower-frequency design than the NPN transistor. The
high-performance analog IC's include low-power, high- input-impedance
operational amplifiers and high-slew-rate operational amplifiers.

Some unijunction transistors (UJT's) degrade significantly
at tactical levels of neutron fluence. However, it is possible to use
UJT's in circuits if the design margin of these circuits is sufficient to
accommodate the neutron-induced changes. Thyristors, including silicon
controlled rectifiers (SCR's), may be vulnerable to neutron damage at
fluences as low as 1011 n/cm2 . The primary damage effects are increased
required gate current and degraded gain. These can usually be
compensated for by providing higher gate drive. However, the
determination of the proper design margins will likely depend on
experimental response data.

The effects of neutrons are not dependent on the device
being biased during the irradiation. Although this factor simplifies the
experiments at nuclear reactor facilities, the equipment is susceptible
during the complete stockpile-to-target sequence. This susceptibility is
in sharp contrast to other TRE that are very much dependent upon the
semiconductor devices being biased.

Total dose effects in semiconductors.--The total ionizing
dose effects on electronics at the levelm of interest to field Army
equipment can produce several effects; one of these is circuit latch up.
Latch up is an unusual, undesired, stable mode of circuit action that,
once initiated, can be altered only by removing the external primary
power. During latch up, larger than normal currents continue to flow
through the latched device until the primary power is removed. In some
circumstances, this continuance could lead to device burnout. From an
operational standpoint, an additional problem occurs since a latched-up
device cannot respond to input signals. Implicit in the condition for
latch up is that the equipment is powered. Therefore, latch up is not a
threat when the system is in storage, transit, or any scenario where the
system is unpowered.

The latch-up phenomenon occurs at very low doses (-10 rad
(Si)), but only for high dose rates (greater than 107 rad (Si)/s), and is
initiated in four-layer semiconductor junctions (PNPN). Bqcause of this
unique junction requirement, bulk complementary metal oxide
semiconductors (CMOS's), junction-isolated (JI) bipolar IC's, and SCR's
are latch-up candidates. Whereas direct current (dc) applications of
SCR's have a certain and predictable latch-up response to ionizing
radiation, the alternating current (ac) applications are not always as
predictable. Because latch up is so rapid and can cause large
instantaneous currents to flow, even ac applications of SCR's are
suspect. It is best to avoid SCR circuits. If latch-up susceptible
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devices (SCR's and certain types of JI and CMOS IC's) cannot be avoided,
adequate current limiting on the power supply buses can be provided to
reduce the probability of latch up and prevent device burnout. Automatic
circumvention and manual cycling to restore normal system operation are
other alternatives.

Latch up in JI bipolar IC's has been observed in cnly a few
part types. On the other hand, bulk silicon CMOS IC's are more likely to
latch. Unfortunately, these technclogies comprise the bulk of the IC's
being manufactured today. Before using these part classes, one should
determine whether latch up will occur in the part type under
consideration. This occurrence is best determined with ionizing rate
experiments on the chosen IC's or through the literature. Once latch up
has been identified as a problem, there are several possible solutions.
The simplest is to have tVe operator turn the power off and then back on.
Although this is an inexpensive approach, it has the fault of requiring
the operator to have the presence of mind to perform this routine. A
fault indicator might resolve this problem. An automated alternative is
an electronic detection scheme using an SCR to act as a crowbar to the
power supply; 1 s later, the power is turned on. A more desirable
solution is to limit the current to the IC's from their power supply by
the addition of a small series current-limiting resistor. The value of

this resistor should be chosen to limit the current below that value
necessary to sustain latch up. In some cases, an alternative cevice may
be available off the shelf that will not latch since designs (topology)
vary among vendors. Dielectrically isolated (DI) IC's can be substituted
for JI IC's. For the most difficult cases, there are special
manufacturing techniques available that eliminate latch up in CMOS's.
Among these techniques are gold doping, mask layout design (ior example,
eliminating four-layer structures or preventing first and third junctions
from being forward biased), and even neutron irradiation. (Neutron
irradiation and gold degrade the minority carrier lifetime of the
parasitic transistors and thereby preclude latch ap.)

i aIonizing radiation also can change the semiconductor-
insulator interface of devices. Bipolar devices typically have a
passivation layer where such changes can occur. Fortunately, in bipolar
IC's, this is a second-order effect, and, for the total dose levels of
interest in tactical systems, this effect can be neglected except for
IC's operated at much lower than normal currents. On the other hand, in
MOS IC's, this is a first-order effect and is manifested as an induced

4 threshold voltage shift. The threshold voltage shift is a permanent
change. Its magnitude is a function of the gate-bias volt ;e and the
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material properties of the gate insulator. In CMOS/SOS devices,* there
is an additional problem of increased back-channel leakage current. This
can increase the current drain in the device by orders of magnitude at
doses greater than 10 4 rad (Si).11

Hardened MOS IC's, by using a variety of techniques, have
been fabricated. Such hardened MOS IC's have performed satisfactorily at
radiation doses greater than 106 rad (Si). When commercial or custom MOS
IC's are used, particularly dynamic n-channel metal oxide semiconductor
(NMOS) or CMOS large-scale IC's, the variation in the total dose response
within the part type is determined (usually experimentally) and taken
into account before the final decision to incorporate these IC
technologies in the design of a system. At this time, it is likely that
custom or commercial CMOS IC's with acceptable radiation response
characteristics can be readily purchased. However, the same is not true
of current NMOS technology. This technology should be avoided if it is
at all possible. If NMOS technology must be used, the piece-part
response data must be obtained. These data must be from various date
codes of the vendor selected. If the response is acceptable, then that
IC type should be procured from the same vendor under military
specifications that will control manufacturing changes that might lead to
degradation of response characteristics.

A recently proposed alternative solution would permit the
use of NMOS microprocessors in modest total dose environments.' It is
well known that the total dose response of MOS IC's is a function of the
applied bias.1 2 If a circuit that is designed to detect gamma rays and
remove bias from the NMOS microprocessor for approximately 10 s is
included in the system, then the survivability of the system may be
increased by an order of magnitude. Although this concept has not been
tested, it is considered a feasible solution.

A consideration in the radiation evaluation of MOS IC's is
the time to deliver the total dose. Radiation-induced photocurrents in
the Si substrate can momentarily reduce the field across the gate oxide.
This decrease affects the production and the transport of charges in the
oxide, which in turn influence the device threshold voltage shifts. For

11J. R. Srour. S. Othmur, and S. C. Cher. Leakage Current Phenomena in
Irradiated SOS Dsyvices, IEEE Trans. Nucl. Sci., NS-24 (December 1977).

1 2 David K. Meyers, Ionizing Radiation Effects on Various Commercial
NMOS Microprocessors, IEEE Trans. Nucl. Sci., NS-24 (December 1977).

*A CMOS made cn a sapphire substrate is designated "CMOS/SOS," where
"SOS" is silicon >n sapphire.

tWilliam Seliek, Directorate of Atomic Weapons Development, Ministry
of Defense, London, UK, private communication.
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this reason, the total dose threat specification should include the time
history (see table 1 as an example). This time history should be used
when designing a system or choosing an ionizing radiation simulator for
testing. Based on the threat, our recomendation is to use a 6 0Co source
in contrast to a pulsed source as a total dose simulator and to
accumulate the specified dose within 10 s, if possible.

Dose-rate effects in semiconductorq.--The basis for dose-
rate effects in semiconductors is that ioniziny radiation generates
electron-hole pairs. in silicon 1 rad absorbed can produce greater

thn113 elcrnhl5arlnthan 101 electron-hole pairs/cm. The curzent, which is produced in a
PN junction by ionizing radiation, is called the primary photocurrent.
This primary photocurrent can be multiplied within transistors (due to
their inherent current gain), multiplied still further by the rest of the
circuitry, and appear as an amplified or a secondary photocurrent.

The dose rate threat in the extreme has a FWHM of 150 ns.
For devices whose dose rate response depends on pulse width, calculations
and tests must use this extreme value of pulse width. For devices and
circuits whose dose rate response depends on current, pulse width of
<150 ns are recommended.

The total photoresponse of a transistor or an IC in a
circuit depends on the circuit parameters, the circuit design, and the
gain of the device. The isolation of a device from the power supply and
the circuit gain are the factors that determine the power dissipated in
the device and the size of the induced signals. Circuits with inductors
or transformers can provide pulsed response in a high-rate, ionizing
environment that will exceed the power and voltage capabilities of
devices.

The ionizing dose-rate effects include transient false
signals, device burnout, semiconductor logic upset, and reversible and
irreversible changes of state. Most Army equipment does not have an
operate-through requirement for nuclear survivability. Transient false
signals and logic upsets can be compensated for. For example, the bad
data can be discarded, a retransmission can be requested, or a way to
reestablish synchronism or stored informati.on can be provided. In some
military equipment, some degree of logic upset protection is provided for
since commonly occurring power transients and outages can produce similar
effects. In systems in whi-h stored information is inviolate, special

4 precautions must be taken :o minimize radiation-induced photocurrents.
Magnetic storage devices (di 3c, tape, core, or plated wire) can survive
greater than 109 rad (Si)/s without stored data being scrambled. Another
option is CMOS/SOS memories. These devices have been demonstrated to
survive upset beyond 1010 rad (Si)/s. 1 3

1 3George Brucker, Characteristics of CMOS Bulk and SOS Memories in a
Transient Environment, IEEE Trans. Nucl. Sci., NS-24 (December 1977).
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Where there is an operate-throu-h requirement, the
nuclear-induced transients must be sensed, and the appropriate electronic
state must be established and reestablished automatically. This
circumvention technology has been developed and extensively applied to
strategic missile systems. 14,* However, this approach can be expensive.

Prevention of semiconductor burnout in discrete devices and
IC's is strongly associated with reliability considerations and good
design practices. There are two types of burnout: metall'ization burnout
and junction burnout. Both types are caused by the large currents
induced in the circuit by the gamma pulse. Most metallization burnouts
are due to defective metallization, which can be avoided by proper device
reliability design methods. To prevent currents able to produce burnout,
it is necessary to properly isolate the piece part from its primary
source of current, that is, its power supply. Proper isolation is
normally achieved with appropriate current limiting techniques.

As is discussed in section 2.3.4, the nuclear EMP can burn
out devices through currents coupled into the electronics. Prompt gamma
rays arrive almost simultaneously with the nuclear EMP. Some early work
has indicated that the effects of these two environments can be
synergistic in terms of the burnout thresholds of bipolar
devices. 1 5 Moreover, in analog IC's, the gamma-ray-induced increase in
conductivity may lead to EMP-induced junction failures inside the IC
where these failures might not have occurrea without the simultaneous
ionizing radiation. The best way to mitigate this problem is to provide
adequate EMP protection. These protection techniques are discussed in
section 2.3.4.

Radiation response of electro-optical components.--The
transmission of information in fiber optic (FO) cables is permanently
degraded at low total ionizing doses due to an increase in optical
absorption. This degradation is a function of the cable composition, the
length of the cable, the ambient temperature, and the carrier wavelength
to be transmitted. The degradation of FO cables can be reduced by
judicious choice of materials, use of the shortest length possible, and
selection of the carrier wavelength for minimum absorption. The
ionization pulse produces a transient increase in absorptivity and a

14Richard K. Thatcher, ed., TREE (Transient Radiation Effects on
Electronics) Handbook (U), 2, 3rd ed., Battelle Columbus Laboratories,
Columbus, OH, DNA 1420H-2 (May 1972). (Defense Documentation Center AD
519563, AD 528947) (SECRET RESTRICTED DATA)

1 5D. H. Habing, The Response of Bipolar Transistors to Combined EMP
and Ionization Environments, IEEE Trans. Nucl. Sci., NS-17 (December

1970), 360-363.
*See Selected Bibliography.
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transient luminescence in FO cables. Usually, these transient effects
last less than 1 s. The impact of both the permanent and transient
effects are system dependent and can be worsened by low temperatures.

Of the various types of lasers, only the yttrium alumimum
garnet (YA1 2 0 3 ):neodymium (YAG:Nd) laser is of concern to nuclear surviv-
able tactical systems. The YAG:Nd system output energy degrades at
total-dose levels as low as several hundred rad (YAG). The energy output
is a measure of the effective range of a laser system. If the system is
designed to operate at or near the inversion (lasing) threshold, small
radiation-induced changes can turn off the laser. The cause of these
changes is the ionizing radiation-induced absorption in the crystalline
laser medium. Repeated pulsing of the laser can bleach (remove) most of
the induced absorption. The effect of this degradation can be minimized
by providing more optical input power to the laser crystal.

Some light-emitting diodes (LED's) begin degrading at
neutron fluences less than 1012 n/cm2 . For example, GaAs:Si LED output
degradation can be as much as 10 jercent of the preirradiation value at
1012 n/cm2 and 90 percent at 5 x 1012 n/cm2 . In LED applications, one
should ensure an adequate design margin. The designer should also
include provisions for dose-rate-induced light spikes.

All optical detectors respond to the dose-rate environment
with a pulse output. Current limiting should be provided to protect
against detector burnout. Phototransistors, some Si detectors, and InSb
photovoltaic detectors are degraded by neutron fluences less than
1012 n/cm2 . For example, some phototransistors are degraded 10 percent
at 1011 n/cm2 , and photovoltaic Si and photovoltaic InSb are degraded

1i0 percent at 5 x 1011 n/cm2 . In most applications, one should be able
to design around this degradation by allowing for the anticipated
degradation or, in the case of the Si PIN (P region, intrinsic region, N
region) diodes, by biasing the device into depletion or otherwise
selecting an alternative detector.

2.3.3.2 Circuit and System Transient Radiation Effects Hardening
and Validation

This discussion of TRE has indicated a variety of device
responses to the constituents of the initial nuclear radiation. Table 2
sammarizes the effects on semiconductor devices and electro-optical
materials.

1 6 j. j. Halpin, A Progress Report on the Transient Radiation Effects

c i La.~er Materials, FY71, Naval Research Laboratory NRL Memorandum Report
22.37 (30 June 1971). (Defense Documentation Center AD 888249L)
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TABLE 2, SUMIMARY OF TRANSIENT RADIATION EFFECTS

Device class Permanent effects Transient effects

Bipolar

Transistor Current gain decrease Induced photocurrent
Leakage current increase
Saturation voltage increase
Junction burnout

Unijunction transistor Valley voltage increase

Diode Forward voltage increase Induced photocurrent
Leakage current increase Reverse voltage change

Thyristor Holding current increase
Gate firing current and
voltage increase

Breakover voltage increase
Induced turn on

Integrated circuit

Digital Logic level shift Logic upset*
Fan-out decrease
Input threshold voltage shift
Latch up

Analog Gain decrease Induced photocurrent
Offset voltage shift Output voltage change
Offset current shift
Latch up

Complementary metal oxide
semiconductor

Bulk Threshold voltage shift Logic upset*
Latch up

Silicon on sapphire Threshold voltage shift Logic upset, but outside range
Increase in standby current of interest

N-channel metal oxide Threshold voltage shift Induced photocurrent
semiconductor Logic upset*

Fiber optics Optical absorption increase Optical absorption increase
Transient luminescence

Laser Output power decrease Output power decrease

Light emitting diode Light output degradation Induced light spikes

Detector Output decrease Current pulse

*This effect can cause permanent change; for example, data in memory arc scrambled and
must be reentered., The change car also be temporary; for example, data processing can be
interrupted by a radiation-induced transient, and, after the transient has died out, normal
processing is resumed.
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The procedures that are usually used to overcome TRE are
scattered throughout section 2.3.3.1. Table 3 summarizes these
procedures. The X indicates a potential area of vulnerability to an
initial nuclear radiation constituent at tactical levels. The hardening
procedure varies with both the device type and the radiation constituent.
This section summarizes the hardening procedures and validation methods
to be used for each constituent.

Neutron hardening procedures and survivability validation.--
The neutron response of a system can be inferred from the response of the
devices in the system's circuits. To harden the circuits and, therefore,
the system itself, it is necessary to understand and obtain data for the
response of the devices in the sys..tem. This knowledge along with
engineering models for semiconductors that represent the electrical and
neutron response characteristics of these devices can be used to
determine the response of the circuit.

The degradation of the devices induced by neutron radiaLion
must be added to other degrading factors such as temperature, parts
variability, and reliability, in the design of circuits. Specifically,
the neutron-radiation-induced degraded values of device parameters must
be used as sterting values before the design margins and other degrading
factors are added.

As table 3 indicates, the hardening approaches for neutron
irradiation are the proper choice of devices (for example, selecting
bipolar transistors with an fT greater than or equal to 50 MHz) and
adequate design margins (for example, using digital bipolar IC's at less
than their maximum fan-out).

Design considerations and piece-part response information
should be combined with hand or computer analyses to determine the
circuit survivability. Circuit response calculations should be combined
to determine subsystem* and then system level response. Where piece-part
data or circuit predictions indicate narrow survivability margins (in
general, less than a factor of two), a statistically significant number
of samples of the parts or the circuit should be tested. For a system's
neutron response, piece-part data coupled with circuit analysis can
provide acceptable confidence in the system's survivability.

*"Subsystem" means a combination of circuits that can stand alone and

perform a very specific function, such as a power supply or a range
finder.
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Total-dose hardening procedures and survivability valida-
tion.--As indicated in table 3, total dose at tactical levels does not
affect many of the common classes of devices such as bipolar diodes,
transistors, and IC's. For those that are affected, much of what applies
to hardening against neutrons applies also to hardening against total
dose. In other words, the response of piece parts must be determined
experimentally. The response of the circuit itself is then determined
from these piece-part data.

Hardening approaches for total dose include proper choice
of devices (such as purchasing CMOS devices with acceptable total-dose
response characteristics or choosing the proper material for fiber
optics) and adequate design margins (such as increasing optical input
power for lasers or minimizing the length and choosing the proper carrier
wavelength for fiber optics). But the NMOS device constitutes a special
case. If it must be used, then device response data must be obtained.
If the response is acceptable, then that device should be procured from
the same vendor under military specifications.

Since latch up occurs at very low doses, but only at high
dose rates, the discussion of the hardening procedures that prevent latch

up is deferred until the discussion on dose-rate hardening.

Validation of total-dose survivability is done much the
same as for neutrons. System total-dose validation is treated on a
piece-part basis. Piece-part data coupled with an analysis of circuit or
subsystem design margins can provide acceptable confidence in the
system's survivability.

Dose-rate hardening procedures and survivability valida-
tion.--Dose rate affects many more device classes than total dose. These
effects on systems must be treated on a parts, circuit, and subsystem or
system level and cannot be strictly limited to piece-part response. In
general, analytical techniques are not high confidence approaches to this
constituent of the initial nuclear radiation.

As indicated in table 3, the hardening approaches to
dose-rate effects are proper choice of devices (such as using CMOS
devices that incorporate gold doping or dielectric isolation or avoidirng
those rare JI bipolar IC's that are prone to latch up) and current
limiting (such as isolating the device from its power supply with an
appropriate current limiting impedance). Table 3 indicates also that
consideration should be given to operational alternatives t o ease the
survivability reqcuirements on the system. Such alternatives include
avoiding operate-through-the-burst requirements, that is, allowing the
system to be inoperative for at least 10 s or even longer, if possible;
permitting the system to go into latch up and allowing for manual or
automatic cycling of power (off-on); designing computers so that logic
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upsets can be tolerated and data can be reentered to reinitialize the
computer; and designing those systems that require accurate timing or
synchronization so that this timing or synchronization can be
reestablished after a burst with a minimum of delay.

As a general guideline for the validation of the system's
survivability to dose-rate effects, an experimental approach on the
circuit or subsystem level coupled with an analysis for current limiting
in the circuit design should be given preference. This may include an
evaluation of the effectiveness of any operational fixes--for example,
determining the time required to reenter data into a computer.

Initial nuclear radiation simulation and testing.--Certain
simulators are suitable for dose-rate testing, and others are suitable
for neutron and total-dose testing.17 Our recommendations (p. 29) should
be used for the selection of the appropriate simulator.

Regarding testing in general, for any constituent of
initial nuclear radiation, validation tests or tests for data should be
performed at the lowest level possible, that is, at the parts level as
the first choice and at the system level as the last choice. In this
manner, it is more cost effective to have statistically significant data,
and the piece-part data can be used again to analyze systems with the
same piece parts. Moreover, tests on only one system are restrictive in
utiJ1ty and are of no statistical significance. These single tests
increase visceral confidence, ensure no oversights, and provide
confidence in the analytical predictions only on this specific piece of
equipm'.-nt.

2.3.4 Electromagnetic Pulse

Of the four nuclear weapons effects environments discussed in
this document, EMP has particular significance for military electronics.
Though causing no documented deleterious effects to humans, a single
nuclear event cax, gan',rate an EMP capable of damaging or upsetting the
electronics of a sigz:ificant percentage of deployed equipment at
distances considerably greater than in the other nuclear environments.
For this reason, a considerable effort has been made to assure the
survivability of many of the tactical Army equipments to this nuclear
weapons effect. This section highlights some of the most important

*117
1 7 TREE Simulation Facilities, 1st ed., Battelle Laboratories,

Columbus, OH, DASA-2432H (October 1973). (Defense Documentation Center AD
A009308)
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aspects of EMP, its effects on electronic equipment, typical generic
hardening methods, and some of the universally accepted test techniques
in support of validating system survivability.

Though transient, EMP differs significantly from other
electromagnetic transients commonly addressed by today's system design
engineers. For example, even though the EMP phenomenon is similar to
that generated by lightning, the high-frequency content in an EMP
signature is much larger and, generally, makes standard lightning
protection inadequate. The frequencies of interest for electromagnetic
interference (EMI), on the other hand, include most of the frequencies
contained in EMP, yet the amplitudes associated with EMP are orders of
magnitude greater than those associated with EMI. The point is that a
system normally protected from lightning, EMI, and other electromagnetic
transients is not necessarily protected against EMP.

However, EMP does have some characteristics in common with
other transients. As with any transient electromagnetic signal, EMP
couples to systems through deliberate or nondeliberate antennas or
penetrates into systems through various deliberate or inadvertent
apertures. Voltage and current transients able to permanently damage or
upset equipment can be coupled to electronic piece parts through these
means. Whether or not damage or upset occurs is determined by just how
much energy is coupled to the sensitive piece parts and the damage or
upset level of those piece parts. For EMP protection, a number of
standard methods have been developed by the EMP community and are being
used.

2.3.4.1 Electromagnetic Pulse Environments

The term "EMP" is an acronym used by the nuclear weapons
effects (NWE) community to cover an enormous range of EMP signatures.
Typically, EMP criteria on tactical Army equipment are given as two
environments: HAEMP and LAFMP. In the following paragraphs, we identify
how EMP is generated by a nuclear detonation and explain why the EMP
criteria are given in two parts.

Nuclear EMP is created by the change in motion of

high-energy electrons that are released by weapon-generated gamma rays
colliding with molecules in the air or the ground. This complicated
process occurs in a fraction of a second. It is important to know,
howe-ver, that the resultant EMP signature as seen by an observer on the
ground is shaped by a number of scenario parameters, which include the
weapon yield and the height of burst (HOB), asymmetries in the earth's
atmosphere, the location of the burst with respect to the earth's
magnetic declination, and the relative distances of the observer to both
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the ground and the burst point. As mentioned in section 2.1, two
distinct scenarios produce the two types of EMP threats. The scenario
differences that concern us most are the weapon yield and the HOB.

High-altitude electromagnetic pulse.--An HAEMP is the
result of a high-yield weapon typically greater than a fraction of a
megaton, detonated more than 30 km above the earth. The HAENP is
represented by a plane wave of large amplitude '.hat is less than or equal
to 50 kV/m; its rapidly rising waveform (on the order of 10 ns) and
decaying waveform (on the order of hundreds of nanoseconds) includes
frequencies up to hundreds of megahertz. The resulting area of coverage
on the surface of the earth encompasses all points within the line of
sight of the burst. Figure 4 illustrates one such set of electric field
contours on the continental United States for a single burst scenario.
The enormous range is determined by the HOB, which in figure 4 was
hundreds of kilometers, and the electric field contour distribution is
determined by the magnetic declination lines.

Figure 4. Equipotential contours of representative high-altitude electro-
magnetic pulse scenario.

The HAEMP criteria specified by ANCA are actually a
composite of realizable, worst-case conditions that, in reality, cannot
exist at any one place or time. The criteria are given in terms of a
single free-field waieform, its polarization, and its angle of arrival.
For these criteria to be used by circuit analysts in vulnerability
assessments or to be simulated in syster tests, the waveform must be
ground interacted be' -re it can be coupled into ground-based equipment as
HAEMP. The reason -3 that when electromagnetic waves reflect from the
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earth's surface, the incident fields are modified for an observation
point above the ground. This subtlety is often ignored by the analyst
and by those involved in selecting HA'ZMP test facilities. Typical grou•d
conductivities are 10-3 to 7 x 10-3 mho/m, and typical dielectric
constants are 15 to 5.

Low-altitude electromagnetic pulse.--For our purposes,
LAEMP is used to specify the EMP associated with nuclear detonations on
or near the ground. The HOB's associated with these detonations are
chosen to maximize nuclear blast damage and, at the same time, minimize
fallout. Aiternatively, bursts at or below the surface of the earth are
used when obstructions are desired on roadways and airport runways. In
contrast to HAEMP, the LAEMP resulting from these bursts is accompanied
by the other nuclear weapon environments.

The LAEMP environment specified in Army system nuclear
survivability criteria is calculated for what are considered to be
worst-case conditions.* The LAEMP specification includes the vertical
and horizontal electric fields, the azimuthal magnetic field, aad the
time-varying air conductivity. lae energy content of the LAEMP is
significant down to about 1 kHz. The rise times are on the order of the
HAEMP rise time. These conditions prevail over regions much smaller (on
the order of kilometers from the burst point) than those resulting from
the HAEMP described above.

A transi',.nt EMP can be induced inside a system that is

exposed to the galrma radiation from a nuclear burst. This
electromagnetic energy is associated with the pulse of Compton electrons
emitted from the walls of the system enclosure and from materials within
the system. The effect is known as system-generated electromagnetic
pulse (SGEMP).

Experiments and calculations have shown that the SGEMP
fields generated in large structures, such as a communications shelter,
are on the order of 10 percent of the unshielded external E"? (that is, 2
to 5 kV/m). Since these SGEMP fields follow the immediate radiation
pulse of the weapon, a much larger portion of their energy is at
frequencies above 50 MHz than is EMP energy.

2.3.4.2 Electromagnetic Pulse Effects on Electronic Equipment

Army communications and weapons systems generally share
electrical char.acteristics that make them effective couplers of EMP.
Vehicle, missile, or electronic shelter skins; electronic subsystem

*Recent findings at the Harry Diamond Laboratories indicate that this

may not be true. See T. Wyatt ind R. Gray, Near Surface Burst EMP, Proc.
DNA Seminar on EMP Environments and Hardening (5 October 1977).
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enclosures; cables and field wire; and headsets--all can act as
unintentional antennas, and, although inefficient, they can provide good
transmission paths for EMP-induced currents. Intentional antennas,
particularly those designed for frequencies less than 100 MHz, are
especially effective EMP couplers.

The EMP coupling of a radio can be configured for a
manpack, a vehicle, or an aircraft. In the manpack configuration,
assuming a simple battery-powered radio with an integral antenna, the
coupling sources are direct peietration through the case and antenna
coupling. In the vehicular configuration, the antenna is mounted at some
distance from the radio, and nower may be supplied from the vehicle
alternator. The antenna and power cables, which run across a conductor
(the vehicle body), can have currents injected directly or indirectly
(induced by the vehicle skin currents). In the aircraft configuration,
the antenna and the radio are separated, a-d power is supplied by the
engine alternator. However, some electromagnetic shielding for the
connecting cables may be provided by the body if it is a conductor or by
a metal conduit when one is used.

Voltage and current pulses injected into such electronic
systems can burn out components or generate false signals and cause logic
upset. Component burnout is a catastrophic and permanent change in a
device. The burnout threshold of a piece part is, as a first-order
approximation, dependent on the power handling capability of the part.
Energy levels that cause component burnout and circuit upset are
summarized in table 4. The levels in the table are for the energy
actually dissipated in the device itself. To cause buL'nout or upset,
this amount of energy must be coupled into the component either directly
or indirectly.

If the componenf is directly connected to wires entering
the system, it is part of an interface circuit, and the energy collected
by these wires is directly coupled to the circuit components. If a com-
ponent is not part of an interface circuit, significant energy can still
be coup.ed indirectly to low-impedance circuits if there is a wire loop.
Magnetic fields, particularly low-frequency fields, can penetrate
enclosures and induce currents in these wire loops. Certain grounding
techniques are another source of indirect coupling: inadvertent loops
can be created as a coupling source for the magnetic fields, or potential
differences can be ,reated by using multipoint grounds. Also, vehicle
body or cable shield currents, created by the EMP, can induce currents in

adjacent conductors. This means that even shielded cables can have
significant transients induced on the inner conductors. The conclusion
is that system response to the EMP is a function of both coupling sources
and piece-part susceptibilities, However, the priority in determining
system vulnerability should be placed on coupling analysis with
consideration of the signal attenuation factors provided by various
shields.
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TABLE 4. MINIMUM ENERGY REQUIREMENTS

Function Device Minimum energy (J)

To cause burnout Microwave diode I x 10-7

Analog integrated circuit 8 x 10-6

Field-effect transistor 1 10-5

High-speed switching diode 2 x 10-5

Switching transistor 5 x1-5

Digital integrated circuit 8 x 1O-5

Tunnel d~ode 5 x l0-4

Rectifier diode 6 x l0-4

Relay 2 x!0-3

Silicon controlled rectifier 3 x 10-3

Microammeter 3 x 10-3

Audio transistor 5 - 10-3

Vacuum tube 1.0

To cause circuit Integrated digital circuit 4 x 10-0
upset (flip-flop)

Discrete component digital I x IO-9
circuit (flip-flop)

Memory core 3 x l0-9
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The phenomenon of SGEMP should be considered along with

external EMP and other direct radiation as part of the total nuclear
effects threat in situations for which radiation dose-rate levels of
107 rad (Si)/s or higher are expected. However, because the internal

electric fields are proportional to the size of the system, systems that
are much smaller than a signal shelter, such as a radio, are in general
not vulnerable to SGEMP. Rooms that are electromagnetically shielded
i-i-st external EMP can be susceptible to internal SGEMP, because the
iMP-induced transients can appear on other than external coupling

sources. Although upset is expected, it can be minimized if a system is
hardened to EMP.

2.3.4.3 System Hardening

General approach.--The decision to harden a piece of Army
tactical equipment to HAEMP, LAEMP, or SGEMP must consider the
equipment's criticality to the mission. That is, if a system is
critical, it is not enough that a piece of contractor-furnished equipment
(CFE) be hardened; all mission critical elements of the same system must
be addressed, including the critical Government-furnished equipment (GFE)
that might couple energy to the CFE (through connecting cables) er might
be weak links in the total system. An example of such a complex system
is a radio connected to GFE such as a remote antenna, a remote sensor, a
printer, a display device, or communication security (COMSEC) equipment.

System hardening to assure mission survivability must
consider both permanent damage and upset as potential problems. To
assure that no permanent dimage occurs, EMP-induced signals rimst not
reach critical components. Electrical energy can be diverted by (1)

shielding the system and treating the penetrators to eliminate
EMP-induced signals on the system or (2) shunting the EMP-induced
transients from critical components. Against upset, the system can be
treated the same way, although it is generally treated by operational or
software changes, since upset levels of the order of a few volts cannot
always be eliminated in a cost-effective way by hardware changes.

Practical applications.--To define hardening requirements,

a system can conveniently be subdivided into segments (zones) that are
simple enough to be treated both theoretically and experimentally. The
interfaces of these zones are typically the points where EMP protection
is applied. Figure 5 illustrates this zoning concept. The outer surface
of the system forms the interface separating the external zone (zone 0)

from those within (zones 1, 2, 3). By this zonal approach, a balanced
allocation of hardening can be considered no matter how big or small,

simple or complex the system may be. Tactical equipment can be
conveniently divided into four zones. Zone 0 is the incident EMP
environment, zone 1 is bounded by the exterior skin, zone 2 is bounded by
the internal cable runs and cabinets, and zone 3 is bounded by the
equipment case.
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ZONE --

ZONE 2

ZOFE I

ZONE2

IZONE 2

Figure 5. Generalized system topology--zonal coupling concept.

All circuits and components connected to zone penetrators
must be evaluated for their vulnerability once the coupling analysis has
been completed. Such evaluations may be experimental or analytical.
Some experimental pulse stress data of piece-part burnout are available
from Government and industry sources. Experimental diata, even
though more expensive, are preferred for their accuracy. Preferred
testing techniques are available in many documents generated at HDL, the
Defense Nuclear Agency (DNA), the Air Force Weapons Laboratory (AFWL),
and other agencies doing military research. 2 1 -2 3

1 8Users Manual for Supersap 2, The Boeing Aerospace Co.- Seattle, WA,
AFWL-TR-75-70 (1975). (Defense Documentation Center AD A022979)

J9 joseph R. Miletta, Component Damage from Electromagnetic Pulse (EMP)
Induced Transients, Harry Diamond Laboratories HDL-TM-77-22 (October
1977). (Defense Documentation Center AD A037564)

2 0 Thomas V. Noon, Implementation of the Device Data Bank on the HDL
IBM Computer, Harry Diamond Laboratories HDL-TR-1819 (October 1977).
(Defense Documentation Center AD A046480)

2 1 EMP Preferred Test Procedures (Selected Electronic Parts), IIT
Research Institute, Chicago, IL (August 1974). (Defense Documentation
Center AD 787482)

2 2 DNA EMP Handbook (U), General Electric Co., Philadelphia, PA, DNA
2114H-1 to -4 (1971-72, rev. 1976). (SECRET RESTRICTED DATA)

2 3Nuclear EMP, Protection Engineering and Management Notes, Lawrence
Livermore Laboratory, Livermore, CA (1970-1978).
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All circuits and components that are connected to zone
penetrators and that do not meet a specified safety margin are considered
vulnerable and must be made survivable. The design goal is a margin of
10 dB below the mean of the piece-part damage curve. The various
hardening options available must be evaluated against the system's
required functional and physical characteristics and the hardening
effectiveness of the option. Consider two examples: a long
multiconductor cable run and a radio antenna. For the first example,
shielding and terminal protection (shunting) are viable options.
Shielding may add an unreasonable weight penalty; and although terminal
protection devices can conveniently be packaged in the cable connectors,
they might not work so well. For the second example, deliberate radio
antennas operating in the EMP band, 1 kHz to hundreds of megahertz,
in-band protection is required. A typical solution is to provide a
voltage clipping network, which shunts to ground the energy above a fixed
level.

Table 5 lists usual hardening techniques for protection
against EMP. A specific technique is used only when normal circuit or
system functions are not affected. These techniques can be conveniently
grouped into interface circuit modifications (1 to 8), which use either
frequency or amplitude discrimination to effectively increase the circuit
failure threshold; subsystem modifications (9 to 11), which reduce
subsystem vulnerability by decreasing the amplitude of EMP-induced
transients; system modifications (12, 13), which include hardening by
software techniques and a major reconfiguration of the system's design,
interfaces, operation, or deployment.

The inclusion of SGEMP generation and coupling is important
to the determination of the total system response. Because of the SGEMP
effect, large structures, such as communications shelters, may not be
adequately protected electrically by shielding or by protection at
electrical ports of entry into the shelters. Where circuit upset or
computer memory degradation is operationally intolerable, hardening may
be required internally; that is, cables and connectors within the
shelters must be properly shielded, and terminal protection devices
should be placed at the internal component boxes.
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TABLE 5. SYSTEM MODIFICATIONS FOR HARDENING TO ELECTROMAGNETIC PULSE

Modification Description

1, Component value optimizat!on Those component values are specified that will minimize any
circuit transient, that is, use the highest allowable
value of series resistors or shunt capacitors at all
interface points.

2. Component substitution Components are substituted that are less vulnerable
to electrical pulse stress.

3. Filter pin connector Multiple, low-pass filters are integrated into an

interface connector shell to achieve signal rejec-

tion and internal circuit protection.

4, Intes'ace transient buffering External components are used such as external
hardened buffer circuits to protect prepackaged
circuits such as integrated circuits.

5. Terminal protectihn device Suppression devices developed to handle transients
associated with lightning, switching, and circuit
malfunctions can be used to provide EMP protection.

6. Discrete filter Discrete component filters are used to limit the
coupled frequency to a narrow band.

7, Noninterface buffering Automatic gain control, gain-limiting techniques,
and circuit modifications prevent a circuit from
entering an undesirable stable state such as latch up.

8. Other filter Special types of filters are used such as (1) crystal;
(2) ceramic; or (3) hybrid, which uses distributed
passive components and quarter-wave shunt properties
and incorporates suppression devices,

9. Decoupling Circuit isolation techniques such as differential
coupling, electro-optical coupling devices, dielectric
waveguides, and fiber optic cables reject or isolate
electrical transients,

ID0 Packaging Packaging consists primarily of proper shielding and
grounding, Each zone of protection should be individ-
ually shielded, and the shielding package should have
a minimum of apertures. Ground loops should be avoided,
and single point grounds should be used whenever possible.

)I. Subsystem redesign Techniques that must be used to achieve the required EMP

survivability levels for an existing subsystem design
tay be incompatible with the functional and physical
requirements of the subsystem. Such incompatibility
dictates the need to redesign the subsystem, considering
operational, software, and hardware changes.

12. Error detectioa Data coding techniques such as parity checks detect errors
in the data due to EMP interference and reject these date.

13. System redesign The system may have to be redesigned to survive at an
acceptable cost.
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2.3.4.4 Electroma-retic Pulse. Testing and Survivability Validation

Since a nu-Ar -f pro'edures are used for validating system
survivabilify to ZMP. the <e s-lected is in part determined by the
system, the subsystem, or tnt ec- en" to be tested and the nature of
the EMP criteria be~ng kldr.k.:ýd 4 :amely, HAEMP or LAEMP. Some available
simulators are listed el.,1evh-s'

At present, n'v s.,ulitor exactly reproduces the HAEMP
environment or even approx:matetý an LAEMP environment. Therefore, the
reliance upon a single go/no-?c test to validate the system's HAEMP
survivabiliti is invalid. Furthermore, system hardness validation to
LAEMP must be based upon analytical studies that are supported when
possible with system level tests, including current injection and
continuous-wave (cw) illumination.

The analyst must keep one important factor in mind: for
the HAEMP vulnerability assessments and field testing, the ground
interactions are very important for a proper evaluation of the system
coupling to EMP. Free-field, radiating simulators are therefore more
representative of the threat environment for systems located on or near
the ground than bounded-wave simulators. With bounded-wave simulators,
there are generally no ground interactions, and so they are more
representative of the threat environment to systems (missiles, aircraft)
in flight. Bounded-wave simulators are characterized by electromagnetic
(wire) screens that confine the launched electromagnetic wave. Because
of the electromagnetic boundary conditions of the wire screens and the
comparatively small working volume, bounded-wave simulators also are not
suitable for distributed systems (those with long interconnections).

There are two basic test approaches used to support HAEMP
survivability validation studies: (1) threat amplitude testing and (2)
low-level testing.

Threat amplitude testing using an HAEMP-like waveform has
the advantage of providing results that do not have to be extrapolated to
threat amplitude. However, there are drawbacks. High cost and possible
damage to the system are the most obvious. A more subtle disadvantage is
that no existing EMP simulator exactly duplicates the threat environment.
Every simulator has unique and sometimes undesirable characteristics,
such as anomalies in the simulator's resonance, polarity, or planarity.
Therefore, when EMP simulators are used. the only valid approach is to
calculate the system response for the environment produced by the
simulator and for the orientation being evaluated. When there is
agreement between the calculations and the experiments, the analytical

24L. W. Ricketts, J. E. Bridges, and J. Miletta, EMP Radiation and

Protective Techniques, John Wiley and Sons, Inc., New York (1976).
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tools can be considered valid for calculating the system response to EMP
4t the threat conditions.

Current injection and pulse testing are threat-or
subthreat-level test techniques that use a waveform based on the waveform
induced by EMP. With the current injection technique, pulsed currents
and voltages are directly injected into the system where the coupling
source, such as a cable, is ordinarily connected. This technique allows
the evaluation of those input and output ports that have been analyzed
and found to be vulnerable to the EMP threat. This technique can be
adapted to simulate many HAEMP and LAEMP coupled signals; however, all
coupling modes must be taken into account in the analysis that precedes
these tests.

Low-level simulation facilities are designed to illuminate
a system with less-than-threat amplitudes. System response data taken at
such facilities must be extrapolated to the threat environment.
Low-level testing can take one of several forms: less-than-
threat-amplitude single-pulse testing or less-than-threat-amplitude
repetitive-pulce testing, both using HAEMP-like waveforms; or cw testing,
which does not use an HAEMP-like waveform. The difference between the
first two methods of low-level testing is that more data per hour can be
taken by the repetitive-pulse tester. The cw facility can illuminate a
system with a band of frequencies (for example, the HDL cw facility at
Woodbridge, VA, covers 1.5 to 250 MHz), one frequency at a time, for both
horizontal and vertical polarizations. Transient responses of systems
under test are computed from Fourier analysis of the cw data. The cw
approach to system response measurements is more easily automated than
pulse testing; hence, the problem of representing the system's response
in terms of accurate equivalent circuits for HAEMP analysis is
simplified. The cw approach can be applied to the LAEMP analysis
directly if the effects of time-varying air conductivity can be ignored.
If air conductivity is a problem, then its effect must be accounted for
by additional analysis.

Electromagnetic scale modeling is another test method
whereby the system, all its electromagnetic parameters, and the threat
amplitudes and frequencies are scaled. This technique is useful for
preliminary evaluations of distributed systems such as large
communications complexes, especially for determining worst-case
orientations and coupling mechanisms.

In conclusion, no one testing technique that is unsupported
by analysis is effective in validating system survivability to EMP. In
fact, for most EMP vulnerability and survivability programs, several
experimental techniques are combined with rigorous analytic studies to
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arrive at a low-risk evaluation of a system. The HAEMP and LAEMP
environments and coupling mechanisms are much too complex to expect
single go/no-go tests to be adequate for system response evaluation and
validation.

3. MANAGEMENT CONSIDERATIONS

3.1 Nuclear Survivability in Life Cycle

The life cycle of Army systems consists of four phases:
(1) concept, (2) validation, (3) full-scale development, and (4)
production and deployment. This section is a general discussion of the
nuclear survivability considerations for the life cycle model. A more
thorough discussion of the management considerations is in volume II of
this report.2

In each phase of the life cycle, there are a hardware effort
and a planning effort. Generally, the hardware effort is performed under
contract. The planning effort is organized by the materiel developer and
the combat developer. The planning and the documentation in one phase
are designed to influence the hardware development and procurement in the
next phase.

For system nuclear survivability, it is necessary to perform
the studies and the feasibility assessments for nuclear survivability in
the concept phase and to prepare to build survivable hardware for the
validation phase. These preparations include the generation and the
incorporation of the nuclear survivability criteria in test and program
overview, planning, and documentation aspects of the concept phase.

In the validat-ion phase, the best effort should be made to
design and verify the system to survive a nuclear attack. It may not
always be possible or desirable to completely implement nuclear
survivability in this phase, for the reason that better materials,
devices, or technologies may not be available until the next phase. The
rationale, however, is to make as total a commitrent to nuclear
survivability as early as possible to avoid drastic changes in the basic
design of the equipment in the next phase of development. The issue here
is that nuclear survivability is affordable when implemented early in the
system life cycle.

2 Joseph J. Halpin and John P. Swirczynski, Nuclear Weapons Effects on
Army Tactical Systems, Vol. II, Management, Harry Diamond Laboratories
HD)L-TR-1882-2 (May 1979).
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Preparation for system production and maintenance should begin
in the validation phase and be updated in the following phases. These
preparations should include the documentation of those items that will
need to be preserved to retain the system's nuclear survivability up to
and including deployment.

In the full-scale development phase, the objective is to
maintain the survivability already designed and verified by controlling
the changes to the system. During this phase, the incorporation and the
verification of those aspects of nuclear survivability not completed in
the previous phase must be finished.

In the final phase, production and deployment, the greatest
concern is to prevent those changes that would compromise the system sur-
vivability. Any changes in the hardware or operational concepts should
be reflected in the final documentation for the system, and, as appropri-
ate, these documents should reflect the latest nuclear survivability con-
siderations.

3.2 Survivability Costs

If a system's cost were doubled or tripled by nuclear
survivability considerations, then those cost increases would have a
profound effect on the program. However, at tactical threat levels, the
incremental costs for obtaining nuclear survivability are typically only
a small percentage of the overall system costs. The survivability cost
estimates should be 1- to 5- (max 10-) percent typical increments for
research, development, testing, and evaluation (RDTE) and 1- to 3- (max
5-) percent typical increments for unit production. The system
developer, the contractor, and the nuclear survivability community must
analyze the trade-off to determine the impacts of various hardening
methodologies and operational considerations on costs, survivability, and
effectiveness. They must do so to decide on an optimal balance between
cost and survivability while maintaining the required performance.

3.3 Nuclear Expertise

All too often, the various organizations that evaluate, plan,
and recommend developmental survivable hardware do not use the available
nuclear expertise. Without it, the system will survive a nuclear attack
only by accident. The expertise of the Government NWE community should
be called upon at the key planning, testing, and evaluating points in the
life cycle.

The need for nuclear expertise exists in all phases of the life
cycle. In the concept phase, the Test Integration Working Group and the
Special Task Force or the Special Study Group must use nuclear expertise
since their planning documents (the Coordinated Test Plan--CTP--and the
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Concept Formulation Package--CFP) are critical to the system's nuclear
survivability. In fact, nuclear survivability considerations must be
included even in the documents that form a basis for the CTP (the
Independent Evaluation Plan for testing, the Test Design Plan, and the
Outline Test Plan), as well as those that make up the CFP (the Trade-off
Determination, the Trade-off Analysis, the Best Technical Approach, and
the Cost and Operational Effectiveness Analysis). During all phases, the
Army Materiel Systems Analysis Activity should use Government nuclear
consultants for both the nuclear effects test planning and the evaluation
of the test results. The system developer should use Government nuclear
effects expertise to develop the contract packages and to evaluate the
bids. After the contract awards, the system developers should seek
advice from Govermnaent or industry nuclear effects experts on nuclear
effects matters. During the production and deployment phase, those
groups such as the Configuration Control Board, which evaluates and
implements proposed changes (that is, Engineering Change Proposals and
Product Improvements), must also consult with nuclear effects experts to
ensure that the changes do not jeopardize the survivability of the
system. The audits (the Functional Configuration Audits and the Physical
Configuration Audits) must be conducted by using nuclear expertise to
ensure that the final production version of the system does meet the
required nuclear survivability levels.

Within the Army, several organizations support the various
aspects of nuclear survivability. The user community is represented by
ANCA. The material developer has an NWE lead laboratory at HDL. The
nuclear survivability programs throughout the Army are coordinated by the
Nuclear Weapons Effects Program Office 'NWEPO) in HDL. Support for the
nuclear blast and thermal radiation is obtained from the Armament
Research and Development Command, Ballistic Research Laboratories. In
addition: YDL has experts who arc sp.cif.Ica3ly available to support
system developers on NWE matters, the Nuclear Effects Support Team
(NEST). It is funded by DARCOM and available to the materiel developer
through NWEPO.

Throughout private industry, nuclear experts can provide
technical support on a consultant or program basis.

3.4 Supporting Documentation

Some documentation does exist that is useful in the successful
management of nuclear survivable systems. Existing documentation is
compiled and discussed in volume II of this report. 2 That document
includes some NE Data Item Descriptions (DID's), which describe the

2 joseph J. Halpin and John P. Swirczynski, Nuclear Weapons Effects on
Army Tactical Systems, Vol. II, Management, Harry Diamond Laboratories
HDL-TR-1882-2 (May 1979).
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survivability data and plans that the contractor should furnish the
Government and the times that they should be supplied. Volume II also
lists 2 source selection evaluation criteria for bid evaluators to judge
the adequacy of the bidders' responses to nuclear survivability. It also
includes a statement on NWE testing that could be used in the CTP, a
suggested form of solicitation instructions, and a work statement that
could be used in the Request for Quotes (RFQ) or Request for Proposals to
support nuclear survivability.

In addition to these, an Army regulation 3 provides regulatory
support for nuclear survivability. The goals of AR 70-60 are to ensure
the selection of the most appropriate nuclear survivability criteria for
each critical system, to control the granting of waivers of nuclear
survivability requirements, and to ensure that system survivability
programs meet the imposed requirements. This regulation requires that
specific nuclear survivability criteria be defined during the concept
phase and that the Outline Development Plan and the contract
documentation (such as the RFQ) include appropriate consideration of
nuclear survivability. This early application of criteria shculd mini-
mize the cost associated with hardening a system since the system is not
designed and its documentation is not yet developed in the acquisition
process.

4. SUMMARY

The tactical nuclear weapon environment threatens unhardened
equipment, but a practical and cost-effective technology exists to
develop survivable systems. The association of nuclear survivability
with massive, lead-lined structures is antiquated. In fact, as a
hardening technique, shielding is practical only against the EMP or
thermal environrent. (Shields against these environments are not
high-density or massive structures.) Moreover, the search continues for
better techniques to make the design of survivable equipment even
cheaper, more effective, and more compatible with a system's required
functional and physical characteristic, and compatible with emerging
materials and device technologies.

2Joseph J. Halpin and John P. Swirczynski, Nuclear Weapons Effects on
Army Tactical Systems, Vol. II, Management, Harry Diamond Laboratories
HDL-TR-1882-2 (May 1979).

3Army Nuclear Survivability, Department of the Army AR 70-60 (20
September 1977).
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Support exists for the system developer in the form of regulations.
documentation, and nuclear expertise. However, the cost and risk factors
for the development of survivable equipment depend on the developer's
dedication and early attention to the nuclear survivability issues.
Ample use of nuclear experts coupled with timely planning, designs, and
documentation are the critical management factors.

Hardening options and operational fixes should be part of the system
trade-off studies. Quite often, these studies reveal acceptable alter-
native ways of reaching required survivability levels and must be
completed before any consideration is given to reducing or eliminating
the survivability criteria.

On the technical side, the developer must be aware that the effect
of nuclear weapons is not always obvious. A careful analysis and testing
program that is guided or implemented by nuclear experts can
significantly reduce the program .k and increase the compatibility with
the system's required functional and physical characteristics. The
system should be analyzed for its operationally critical areas with the
nuclear survivability efforts being focused on these areas. In addition,
the nuclear survivability program must consider the system as consisting
of all the essential GFE in addition to the CFE.

Analysis is a necessary ingredient in a survivability program.
Analysis is useful for pinpointing problem areas in systems and, if
properly validated, can be used to minimize or eliminate tests of
complete systems. Analysis and scale-model testing are used to determine
worst-case configurations and orientations. However, the most important
reason for using analytical techniques is that no nuclear effects
simulator by itself duplicates all the important features of the threat
environment. Moreover, test methods by themselves are not cost effective
in accounting for the variations in system response that may be caused by
variations among parts and materials or changes in production techniques,
for example. For this reason, the best approach to system nuclear
hardening validation is a proper mix of simulator test and analysis.
These are balanced by comparing the results of the analysis to the
results of tests in simulated environments. Once confirmed, this

analysis techunique can be used to predict the system response to the
threat environment.
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